مدل‌سازی سینتیک خشک‌کردن پیاز در یک خشک کن بستر سیال مجهز به کنترل کننده رطوبت با استفاده از روش‌های رگرسیونی، منطق فازی و شبکه‌های عصبی مصنوعی

Authors

  • جعفری, سید مهدی
  • دزیانی, مسعود
  • سلیمانی, مریم
  • عزتی, رقیه
  • قنبری, فرید
  • گنجه, محمد
Abstract:

سابقه و هدف: مدل سازی سینتیک خشک شدن با استفاده از روشهای جدید مدل سازی از جمله منطق فازی و شبکه های عصبی مصنوعی می تواند به بهینه سازی فرایند و کاهش انرژی مصرفی کمک کند. در این پژوهش علاوه بر مدل سازی رگرسیونی، در رویکردی جدید اصول منطق فازی و شبکه های عصبی مصنوعی به صورت ترکیبی و مکمل هم به کار برده شده و مدلی فازی – عصبی ارائه ودر نهایت توپولوژی بهینه شبکه های عصبی مصنوعی برای خشک کردن پیاز معرفی شده و ماتریس های ضرایب وزنی آن داده شد. مواد و روش ها: در این پژوهش ورقه های نازک پیاز در یک خشک کن بستر سیال آزمایشگاهی با سه دمای 40، 50 و 60 درجه سانتیگراد و دو سرعت هوای 2 و 3 متر بر ثانیه در رطوبت هوای ثابت خشک گردید و جهت بررسی سینیتیک خشک کردن آن از سه روش مدلسازی رگرسیونی، منطق فازی و شبکه های عصبی مصنوعی استفاده شد. یافته ها: در روش مدلسازی تجربی با برازش داده های آزمایشگاهی حاصل با معادلات جبری شناخته شده مربوط به سینتیک خشک کردن، با استفاده از ابزار برازش منحنی نرم افزار MATLAB و تکنیک رگرسیون غیر خطی، مدل تقریب دیفوزیون با ضریب همبستگی 9999/0، ریشه میانگین مربعات خطای 004157/0 و مجموع مربعات خطای 0005702/0 از بین 9 مدل موجود به عنوان بهترین معادله جبری بین متغیرها تعیین گردید. برای شبیه سازی، درون یابی و افزایش نسبت های رطوبت اندازه گیری شده، از ابزار منطق فازی در نرم افزار MATLAB با بکارگیری مدل ممدانی در قالب قواعد اگر-آنگاه و توابع عضویت مثلثی استفاده شد و با وارد کردن نتایج مستخرج از مدل فازی در ابزار شبکه های عصبی مصنوعی، شبکه پس انتشار پیشخور با توپولوژی 2-5-1، و ضریب همبستگی 99956/0 و میانگین مربعات خطای 000039385/0 با بکارگیری تابع فعال سازی تانژانت سیگموئید هیپربولیکی، الگوی یادگیری لونبرگ – مارکوات و چرخه یادگیری 1000 اپچ به عنوان بهترین مدل عصبی ارائه گردید. نتیجه گیری: در مجموع می توان گفت ترکیب اصول منطق فازی و شبکه های عصبی مصنوعی روشی مناسب و قابل اطمینان برای مدل سازی و پیش بینی سینیتیک خشک کردن پیاز و محصولات مشابه می باشد. واژه های کلیدی: خشک کن بستر سیال، رگرسیون، شبکه های عصبی مصنوعی، مدلسازی، منطق فازی

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مدل سازی سینتیک خشک کردن پیاز در یک خشک کن بستر سیال مجهز به کنترل کننده رطوبت با استفاده از روش های رگرسیونی، منطق فازی و شبکه های عصبی مصنوعی

سابقه و هدف: مدل سازی سینتیک خشک شدن با استفاده از روشهای جدید مدل سازی از جمله منطق فازی و شبکه های عصبی مصنوعی می تواند به بهینه سازی فرایند و کاهش انرژی مصرفی کمک کند. در این پژوهش علاوه بر مدل سازی رگرسیونی، در رویکردی جدید اصول منطق فازی و شبکه های عصبی مصنوعی به صورت ترکیبی و مکمل هم به کار برده شده و مدلی فازی – عصبی ارائه ودر نهایت توپولوژی بهینه شبکه های عصبی مصنوعی برای خشک کردن پیاز ...

full text

تخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی

هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...

full text

مطالعه ی سینتیک خشک شدن و چروکیدگی یک نمونه زالزالک در یک خشک کن بستر شناور ارتعاشی با کنترل رطوبت هوای ورودی

در این پژوهش فرآیند خشک کردن و چروکیدگی میوه زالزالک در یک مقیاس آزمایشگاهی مورد مطالعه قرار گرفته است. میوه زالزالک در دماهای 50، 60 و 70 درجه سانتی‌گراد با سرعت‌های جابجایی هوای ورودی 0.92 و 1.06 متر بر ثانیه با فرکانس‌های 6.8 ، 7.5 و 8.2 در یک خشک‌کن بستر شناور ارتعاشی با استفاده از یک سامانه جذب سطحی با بسترهای پر شده از جاذب سیلیکاژل به منظور کنترل رطوبت هوای ورودی از حدود 27 درصد نسبی به ...

full text

تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال

The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...

full text

تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال

The objective of this research was to predict head rice yield (HRY) in fluidized bed dryer using artificial neural network approaches. Several parameters considered here as input variables for artificial neural network affect operation of fluidized bed dryers. These variables include: air relative humidity, air temperature, inlet air velocity, bed depth, initial moisture content, final moisture...

full text

مدل سازی سینتیک خشک شدن کلزا در خشک کن بستر سیال

در این تحقیق سینتیک فرایند خشک شدن کلزا با روش سیال سازی دانه‌ها در محدوده دمایی 30 تا ?C 100 مورد بررسی و مدل‌سازی قرار گرفت. برای معرفی بهترین مدل تخمین روند تغییرات رطوبت از مدل‌های مرسوم در مدل‌‌سازی خشک کردن محصولات دانه‌‌ای استفاده شد. به منظور تعیین ضریب نفوذ رطوبت و انرژی فعال سازی در دانه‌های کلزا از حل معادله فیک برای اجسام کروی شکل و رابطه آرینیوس استفاده شد. با استفاده از مدل...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 5

pages  399- 407

publication date 2013-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023